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Abstract: This paper proposes a hybrid uncertainty propagation approach for system risk assessment. 
In view of hybrid uncertainty propagation with parameters dependency of variables in risk 
assessment, a two level hybrid uncertainty propagation framework was proposed, in which inner and 
outer parameters are characterized with probability and possibility respectively, the numerical values 
are calculated by Monte Carlo (MC) simulation and fuzzy extension principle. In consideration of the 
dependency of epidemic uncertainty parameters, an epidemic uncertainty parameter dependency 
model is designed and a dependency coefficient is proposed. Then the proposed method was 
compared with the conventional two level MC. Finally, taking the safety of one hydrogen and oxygen 
co-bottom tank an example, the effectiveness and feasibility of the proposed method was validated. 

1. Introduction 

In the field of system engineering, the characterization and propagation of uncertainty in 
systematic quantitative risk assessment and the influence of uncertainty on risk decision-making are 
concerned as a hot issue[1, 2]. Especially in aerospace, aviation, nuclear power and other fields, when 
accurate basic reliability data can’t be obtained, risk uncertainty becomes the main basis for risk 
decision-making. 

Risk uncertainty includes two types[3]: One is the stochastic uncertainty (also called objective 
uncertainty) caused by the randomness and contingency of the internal behavior of the system; the 
other is the epistemic uncertainty (also called subjective uncertainty) caused by the lack of 
information and knowledge of the system. In recent years, probability theory as a commonly mean for 
uncertainty characterization and transmission has been questioned, which can’t be used to deal with 
epistemic uncertainty especially when the data is not accurate, knowledge is not complete. For the 
characterization of epistemic uncertainty, Moens D[4-6] promote interval method to describe 
epistemic uncertainty, Rohmer J[7] use probability distribution to depict seismic risk model and data 
uncertainty, Agarwal H[8] proposed a uncertainty quantification method based on evidence theory 
for multi attribute optimization design, Shah[9] use evidence theory to model and propagate 
uncertainty. 

When stochastic uncertainty and epistemic uncertainty exist simultaneously in risk model, 
Guyonnet D[10] proposed a hybrid uncertainty analysis framework, Flage R[11] used a combined 
method by FT and MC to propagate risk uncertainty of the nuclear reactor thermal loop control 
system, Baraldi[12] combines ET with MC method to study the risk hybrid uncertainty of nuclear 
power plant, and the propagation characteristics of uncertainty under probability, possibility and 
probability-possibility framework are given respectively. 

The above method only considers the mixed uncertainties when the risk model input variables, the 
uncertainties of the distribution parameters of the input variables doesn’t been considered in the risk 
model. Baudrit[13] established a two-layer hybrid uncertainty propagation framework, the epistemic 
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uncertainty parameters were completely dependent or completely independent, however the mixed 
uncertainty propagation was not considered when incomplete dependence between the distribution 
parameters of variables exists. Therefore, this paper proposes a uncertainty propagation framework 
considering the interdependence of cognitive uncertainties. For the disadvantage of MC sampling 
independence or complete dependence of uncertainty, a framework of distributed parameter 
cognitive uncertainty dependence analysis is proposed, which can deal with the complete dependence, 
partial dependence and independent propagation of parameters. In order to realize the independent 
propagation of the distribution parameters, the probability distribution is transformed into the 
evidence belief space, and the random set theory is used to realize the independent propagation of 
cognitive uncertainty. Finally, an example is given to illustrate the effectiveness and feasibility of the 
proposed method. 

2. Possibility Theory 
Possibility theory has the ability to deal with uncertainties when information is inaccurate and 

knowledge is incomplete. Unlike probability theory (using a single probability measure), possibility 
theory uses a pair of set functions (possibility measure and necessity measure) to characterize 
uncertainty[14]. Fuzzy set as classical tool of possibility theory is commonly used to characterize the 
uncertainty. A brief description of fuzzy sets theory is given here. Details are given in the 
literature[15]. 

1 2( , , , )na a a  are elements of fuzzy set A , membership function ( )iµ  of ( 1,2, , )ia i n=   
characterize the degree of fuzzy set A , the value is in the interval [0,1] [16].  

Dubois[17] gives the description of membership degree: when A ( )=1uµ


, u  totally belong to set 
A ; when A A( )> ( )u vµ µ

 

 meaning the possibility of u  is larger than v ; if there is an element ia , and 

A ( )=1iaµ


, then the fuzzy set A  is normal fuzzy sets.  
Under the framework of possibility theory，possibility measure Π  and necessity N  are defined as 

follows[18]: 
Set U  is the outputs of y , possibility measure A  is subset of U and defined as: 

( ) sup ( )
y A

A yp
∈

Π =                                                                                                                              (1) 

Necessity measure ( )N A  is defined as: 

( ) 1 ( ) inf (1 ( ))
y A

N A A yπ
∉

= − Π = −                                                                                                      (2) 

α-cut set is a interval value A{ , (x) }A x Uα µ α= ∈ ≥


, it shows that the membership degree of each 

element in the interval is greater than or equal to α, shown as in Fig. 1. Lower bound Lxα  and upper 
bound Rxα  of triangular fuzzy distribution α-cut set can be calculated as: 

( )
( )

L

R

x a b a a
x c a c b

a

a

= ⋅ − +
= − ⋅ −





                                                                                                                        (3) 

The principle of fuzzy number α-cut set operation shown as Eq.4 and Eq.5 

[min( , , , ),
                   max( , , , )]

L L L R R L R R

L L L R R L R R

Z X Y x y x y x y x y
x y x y x y x y

aaaaaaaa      

aaaaaaaa      

= ⋅ = ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅
                                                                           (4) 

[ , ]L L R RZ X Y x y x yα α α α= + = + +                                                                                                        (5) 
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Fig. 1  Interval corresponding to the α-cut for the triangular fuzzy membership 

3. Hybrid Uncertainty Propagation Framework Considering Parameter Dependency 

3.1 Epistemic uncertainty parameters dependency model 
Normally, α-cut is used to calculate the possibility distribution, the parameters of epistemic 

uncertainty are supposed dependent each other completely[19]. However, in actual system 
engineering, epistemic uncertainty parameters are partially dependent, independent or 
positive(negative) dependent[20]. Therefore, the concept of the dependence coefficient of cognitive 
uncertainty parameters is proposed in this paper. The concrete analysis is as follows, detailed analysis 
is as follows: 

1Aα  and 2Aα  are α-cut sets of possibility number 1y  and 2y  respectively, [ 1,1]k ∈ −  is dependency 
coefficient of two fuzzy numbers, dependency model of 1y  and 2y  is defined as Eq.6. When 
0 1k< ≤ , 1y  and 2y  is positive dependence; when 1 0k− ≤ < , 1y  and 2y  negative dependent; when 

0k = , 1y  and 2y  independent; specially, when 1k = ± , 1y  and 2y  positive (negative) dependent. 

1 2dy dyk
d d

α α

α α
=                                                                                                                                                     (6) 

3.2 Hybrid uncertainty propagation with parameters dependency 

 { }, 1,2, , 1,2, ,  from U[0,1]i
jset u i m j k= = 
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, , , ,cαlculαte [ , ] from [ , ] αnd [ , ]i i i i
j j l lα α α α α αf f y y y y

construct , 1,2, ,  from  αnd f i i
i i m  f fα αp = 

i m=

1α =

set α α α= + ∆

set 1i i= +

START

1 2
, ,cαlculαte [ , ] from , , ,k k k n

l l A A Aα α α α α
+ + +

y y

N

N
Y

Y

 

Fig. 2  Hybrid uncertainty propagation flow chart 
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1 1( , , , )nR f Y Y Y=   is risk model, ( 1, , )iY i n=   is input variable. The first k  variables 
{ }1 2, , , kY Y Y  are probability distribution function 

1 21 1 2 2( ), ( ), ( )
kY Y Y k kp y p y p yθ θ θ , and the 

distribution parameter vector is { },1 ,2 ,, , , , 1,2, ,j j j j m j kθ θ θ= = θ , which are probability 

distributions, denoted as ,,1 ,2
,1 ,2 ,( ) { ( ), ( ), , ( )}j mj j j j

jj j j j m
θθ θπ θ π θ π θ= 

θπ θ . Variables 

{ }1 2, , , , ,k k l nY Y Y Y+ +    are possibility distribution, denoted as 
1 2

1 2( ), ( ), , ( ), , ( )k k l lY Y Y Y
k k l ly y y yππππ   + +
+ +   . 

Under the two level uncertainty propagation framework, risk uncertainty propagated through MC 
numerical simulation and fuzzy extension principle. MC realizes probability distribution sampling, 
and fuzzy sets are used to deal with epistemic uncertainty. Detailed algorithm flow is shown in Fig2. 

Flow chart follows as: 
(1) Generate random sampling matrix { }i

ju , [ ]0,1i
ju U∈ ， 1, , , 1,2, ,i n j k= =  ，U  obey 

uniform distribution; 
(2) 0α = ，step of α∆  is 0.05, start the outer LOOP1; 
(3) Calculate the α-cut sets ,1 ,2 ,, , ,j j j mA A Aθ θ θ

α α α  and 1 2, , ,k k k nA A Aα α α
+ + +

 of the probability 
distribution parameter vector ,1 ,2 ,, , , , 1,2, ,j j j m j kθ θ θ =   and the possibility distribution parameter 

vector 1, , , ,k l nY Y Y+   , then calculate , ,[ , ] , 1, 2, ,l ly y l k k nα α = + +   by 1 2, , ,k k k nA A Aα α α
+ + +

 ; 
(4) 1i = , start inner LOOP2; 
(5) Calculate the random intervals , ,[ , ]i i

j jα αy y  of probability distribution vectors , 1,2, ,j j k= Y  
by (1) and (3); 

(6) Calculate [ , ] i i
α αf f  by (3) and (5), ifα  and ifα  are lower and outer bound of i th  random 

sample α-cut set; there is
, , , ,

1 2, [ , ]; , [y ,y ]
inf ( , , , )i i

j j j l l l

i
nj Y y y l Y

f f Y Y Y
α α α α

α ∈ ∈
=   and 

, , , ,
1 2, [ , ]; , [y ,y ]

sup ( , , , )i i
j j j l l l

i
nj Y y y l Y

f f Y Y Y
α α α α

α ∈ ∈
=  ; 

(7) If i m≠ , 1i i= +  and return (5); otherwise, return (8). 
(8) If 1α ≠ , 1α =  and return (3); otherwise, construct m  possibility distribution functions 
, 1,2, ,f

i i mπ =  , and end. 
After the above processes, the outputs , 1,2, ,f

i i mπ =   of risk model 1 2( , , , )nZ f Y Y Y=   can be 
obtained, m  is the sample times of random variables. 

Set A  belongs to output ZU  of risk model Z, then the possibility measure and necessity measure 
of set A  are 

( ) sup { ( )}f f
i z A iA zp∈∏ =                                                                                                                    (7) 

( ) inf {1 ( )} 1 ( )  f f f
i z A i i ZN A z A A Uπ∉= − = −∏ ∀ ⊆                                                                          (8) 

In addition, the belief and plausibility measures can be obtained as by m  possibility and necessity 
measures[13]. 

1
( ) ( )

m
f

i i
i

Bel A p N A
=

= ∑                                                                                                                       (9) 

1
( ) ( )

m
f

i i
i

Pl A p A
=

= ∏∑                                                                                                                     (10) 

Here, ip  is sample probability of i th stochastic variable 1 2( , , , , , )j kY Y Y Y  , if m  is uniform 
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sampling, 1 /ip m= . 

4. The Uncertainty Analysis of Cryogenic Hydrogen and Oxygen Co-bottom Tank 

4.1 Cryogenic hydrogen and oxygen co-bottom tank model 
The fuel tank structure of a type of hydrogen-oxygen engine is designed by adiabatic composite 

material. The hydrogen and oxygen tank is designed by co-bottom structure, and the co-bottom is 
vacuum sealed space, and the tank is divided into two independent parts: liquid hydrogen tank and 
liquid oxygen tank. Because the mixture ratio of hydrogen and oxygen reaches a certain condition, it 
is easy to explode, so the co-bottom is also the safety barrier of the whole tank. To ensure the safety of 
the tank, a common bottom safety monitoring system is used to detect the pressure, gas concentration 
and vacuum of the co-bottom[21]. 

In order to ensure the heat insulation at the bottom, the main technical indicators are: 12h leakage 
rate should be less than 3×10-3Pa·m3/s. In this paper, 12 hours static leakage rate is used to 
characterize the safety of hydrogen and oxygen tank. 

1 2 2 1( ) / ,  Q P P V T T T T= − ⋅ ∆ ∆ = −                                                                                                            (11) 

In Eq.11, Q  is co-bottom leakage rate ( 3Pa m s⋅ ), 1P  is co-bottom pressure detection value (Pa) 
at 1T , 2P  is pressure detection value (Pa) at 2T , V  is co-bottom volume ( 3m ), T∆  is time difference 
(s) between 1P  and 2P , inputs 1 2 1 2, , ,  ,P P V T T  are all uncertainty variables. 

4.2 Uncertainty parameters of co-bottom leakage gas rate 

Due to the influence of systematic errors such as measurement and design, variables 1P 、 2P  obey 
normal distribution 1 1 1~ ( , )p pP N µ σ  and 2 2 2~ ( , )p pP N µ σ , but the distribution parameters can’t be 
obtained accurately. The descriptions of epistemic uncertainty parameters are given by experts in 
field, variance 1pµ  and 1pσ  obey fuzzy triangular distribution, standard deviation 1pσ and 2pσ  are 
constant values. Co-bottom volume V  obey lognormal distribution ~ ( , )V VV LN µ σ . Vµ  and Vσ  are 
epistemic variables, which fuzzy number, 1T  and 2T  obey normal distribution 1 1 1~ ( , )T TT N µ σ  and 

2 2 2~ ( , )T TT N µ σ . 1Tµ , 1Tσ , 2Tµ  and 2Tσ  obey fuzzy triangular distribution. Detailed parameters 
shown in Table 1. 

Table 1  Parameter distributions of epistemic uncertainty 

Variables Value Variables value 

1pµ  (6500,7000, 
7500) Vσ  (0.0045,0.005, 

0.0055) 

1pσ  100 1Tµ  (0,10,5) 

2pµ  (3300,3500,3400) 1Tσ  (0.05,0,0.1) 

2pσ  100 2Tµ  (43100,43200, 43300) 

Vµ  (0.49,0.5,0.51) 2Tσ  (0,100,200) 

Due to the influence of subjective preferences, the epistemic uncertainty parameters are 
interdependent. p1µ , p2µ , p1σ , p2σ , T1µ  and T2µ  are dependent. The other parameters are 
independent of each other, dependent coefficient are given in Table 2. 
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Table 2  Relationships of parameter distributions of epistemic uncertainty 
Variable1 Variable2 Dependent coefficient k 

1pµ  2pµ  -0.5 

1pσ  2pσ  0.3 

1Tµ  2Tµ  -1 

1Tσ  2Tσ  0.7 

4.3 Results analysis 
1) To verify the validity of the proposed method, a comparison between the proposed method and 

the 2-level MC method proposed by Baudrit C[13] is made when the parameters are independent. The 
result is shown in Fig.3. By comparison, the proposed mixed uncertainty propagation method is 
consistent with the 2-level MC method. The cumulative probability distributions are consistent with 
Bel  and Pl , and ( 0.03) 0.91Bel Q < = , uper ( 0.03) 0.9CDF Q < = . 
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Fig. 3  Curevs of proposed method and Baudrit C’s method with epistemic parameters independency 

2) In order to analyze the influence of parameter dependence of cognitive uncertainty on the 
propagation results, taking the p1µ  and 2pµ  as the analysis object, assuming that other parameters 
obey the distribution of in Table 1, when 0k =  and 1k =  the results are shown in Fig.4. By contrast, 
when the epistemic uncertainty parameters are completely dependent,  

By contrast, when the cognitive uncertainty parameters are completely dependent, k=1Bel  and 

k=1Pl  are enveloped by k 0Bel =  and k 0Pl = . Moreover, when the uncertainty parameters are 
independent, the results of risk uncertainty is more conservative. 
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Fig. 4  Curves of hybrid uncertainty propagation with epistemic parameters independent and 
dependent 
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5. Conclusions 
In this paper a hybrid uncertainty propagation framework considering the parameter dependence 

of cognitive uncertainty is proposed. Compared with the bi-cyclic MC framework, the effectiveness 
of the proposed method is verified. At the same time, A general dependency model for epistemic 
uncertainty parameters is proposed. Especially for parameter independence, a hybrid uncertainty 
propagation algorithm based on D-S evidence theory is proposed to overcome the problem of high 
computational cost for dual-cycle MC. When the epistemic uncertainty parameters are characterized 
by possibility theory, and the parameters are independent, the risk uncertainty is the greatest, which is 
suitable for the case that the exact probability distribution parameters can not be obtained, and the 
risk calculation results are relatively conservative. 

Acknowledgement 
The authors gratefully acknowledge the financial support on this work from the Key Laboratory of 

Space Launching Site Reliability Technology of China. 

References 
[1] Lindley D V. Understanding Uncertainty[M]. Wiley-Interscience, 2012: 211-224. 

[2] Helton J C, Johnson J D, Oberkampf W L, et al. Representation of analysis results involving 
aleatory and epistemic uncertainty[J]. International Journal of General Systems. 2010, 39(6): 
605-646. 

[3] Helton J C. Uncertainty and sensitivity analysis in the presence of stochastic and subjective 
uncertainty[J]. Journal of Statistical Computation & Simulation. 2007, 57(1): 3-76. 

[4] Guo S, Zhen L U, Feng Y. A non-probabilistic model of structural reliability based on interval 
analysis[J]. Chinese Journal of Computational Mechanics. 2001. 

[5] Moens D, Hanss M. Non-probabilistic finite element analysis for parametric uncertainty treatment 
in applied mechanics: Recent advances[J]. Finite Elements in Analysis & Design. 2011, 47(1): 4-16. 

[6] Qiu Z, Ma Y, Wang X. Comparison between non-probabilistic interval analysis method and 
probabilistic approach in static response problem of structures with uncertain-but-bounded 
parameters[J]. Communications in Numerical Methods in Engineering. 2004, 20(4): 279-290. 

[7] Rohmer J, Baudrit C. The use of the possibility theory to investigate the epistemic uncertainties 
within scenario-based earthquake risk assessments[J]. Natural Hazards. 2011, 56(3): 613-632. 

[8] Agarwal H, Renaud J E, Preston E L, et al. Uncertainty quantification using evidence theory in 
multidisciplinary design optimization[J]. Reliability Engineering & System Safety. 2004, 85(1): 
281-294. 

[9] Shah H R, Hosder S, Winter T. A mixed uncertainty quantification approach with evidence theory 
and stochastic expansions[C]. 2014. 

[10] Guyonnet D, Bourgine B, Dubois D, et al. Hybrid Approach for Addressing Uncertainty in Risk 
Assessments[J]. Journal of Environmental Engineering. 2003, 129(1): 68-78. 

[11] Flage R, Baraldi P, Ameruso F, et al. Handling epistemic uncertainties in fault tree analysis by 
probabilistic and possibilistic approaches[C]. 2009. 

[12] Baraldi P, Zio E. A combined Monte Carlo and possibilistic approach to uncertainty propagation 
in event tree analysis[J]. Risk Analysis. 2008, 28(5): 1309-1326. 

[13] Baudrit C, Dubois D, Guyonnet D. Joint Propagation and Exploitation of Probabilistic and 
Possibilistic Information in Risk Assessment[J]. IEEE Transactions on Fuzzy Systems. 2006, 14(5): 
593-608. 

--255--



 

[14] Dubois D, Nguyen H T, Prade H. Possibility theory, probability and fuzzy sets 
misunderstandings, bridges and gaps[M]. Fundamentals of fuzzy sets, Springer, 2000, 343-438. 

[15] Ross T J. Fuzzy logic with engineering applications[M]. John Wiley & Sons, 2009. 

[16] Dubois B P H. Fuzzy Sets and Systems: Theory and Applications[J]. Journal of the Operational 
Research Society. 1980, 144: 9-146. 

[17] Dubois B P H. Fuzzy Sets and Systems: Theory and Applications[J]. Journal of the Operational 
Research Society. 1997, 144. 

[18] Dubois D. Possibility theory and statistical reasoning[J]. Computational statistics & data 
analysis. 2006, 51(1): 47-69. 

[19] Baudrit C, Dubois D, Guyonnet D. Joint Propagation and Exploitation of Probabilistic and 
Possibilistic Information in Risk Assessment[J]. IEEE Transactions on Fuzzy Systems. 2006, 14(5): 
593-608. 

[20] Pedroni N, Zio E. EMPIRICAL COMPARISON OF METHODS FOR THE HIERARCHICAL 
PROPAGATION OF HYBRID UNCERTAINTY IN RISK ASSESSMENT, IN PRESENCE OF 
DEPENDENCES[J]. International Journal of Uncertainty Fuzziness and Knowledge-Based Systems. 
2012, 20(4): 509-557. 

[21] R.Z. Wang, T.H. Sun. Analysis and Measure of Vacuum Character for the Co-bulkhead of the 
Cryogenic Tanks[J]. Missiles and Space Vehicles. 2002(2): 47-51. (In Chinese) 

--256--




